分布情況,分析了陶瓷粉末成形件出現(xiàn)密度不均現(xiàn)象的原因。研究結(jié)果有助于對(duì)等靜壓工藝進(jìn)行優(yōu)化設(shè)計(jì)。
1前言粉末等靜壓成形過程是一個(gè)非常復(fù)雜的成形過程,涉及到許多過程參數(shù),例如粉末材料的各種組元、含量,模具的種類、形狀,加工溫度、濕度、壓力等。 在進(jìn)行解析時(shí)還要考慮以下多方面因素的影響:1)粉末材料含有一定孔隙,是一個(gè)非連續(xù)體需要以各個(gè)顆粒之間的變形以及各顆粒之間的協(xié)調(diào)關(guān)系來研究其整體變 形,還要考慮粉末材料對(duì)溫度、應(yīng)變速率存在敏感性的特點(diǎn);2)工件、模具的復(fù)雜形狀、幾何尺寸;3)摩擦邊界條件;4)有限變形等方面的因素。因此,難于 用理論解析方法來對(duì)粉末等靜壓成形過程求解。目前在實(shí)際生產(chǎn)應(yīng)用當(dāng)中,一般都采用反復(fù)試驗(yàn)的方法來確定模具尺寸。這種方法不僅不能保證等靜壓坯料的質(zhì)量, 而且還存在著模具設(shè)計(jì)周期長、產(chǎn)品尺寸精度差以及密度不均等問題,消耗了大量的人力、物力和時(shí)間。
因此采用計(jì)算機(jī)有限元法模擬粉末冶金零件等靜壓成形過程就成為了一種快速有效的設(shè)計(jì)方法。
通過有限元模擬,可以給出成形過程中粉末坯料幾何形狀、應(yīng)力應(yīng)變場、密度分布等數(shù)據(jù),并據(jù)此分析出現(xiàn)質(zhì)量缺陷的原因,從而能及時(shí)改進(jìn)加工過程,快速有效地確定模具的zui終理想形狀,達(dá)到提高生產(chǎn)效率,降低成本的目的。
本文主要對(duì)陶瓷粉末件的冷等靜壓(CIP)成形過程進(jìn)行分析討論。
2解析模型的建立2.1有限元模擬技術(shù)問題本解析的研究對(duì)象為如所示的陶瓷粉末成形件,外層是橡膠模具、中間是陶瓷粉末坯料、里層是芯棒。由于載荷和形狀的對(duì)稱性,將陶瓷粉末件的成形過程簡化為一個(gè)典型的軸對(duì)稱問題。
中部K域頂部區(qū)域芯棒粉體橡膠模具陶瓷粉末成形件的幾何模型陶瓷粉末件的冷等靜壓(cip)成形過程,具有幾何非線性、材料非線性、邊界條件非線性等特 點(diǎn),因而在此采用了增量非線性有限元對(duì)非線性代數(shù)方程組進(jìn)行迭代求解以滿足每步結(jié)束時(shí)的平衡方程,迭代方法采用了全牛頓一拉夫森法。
在幾何非線性方面,從大位移以及大應(yīng)變角度來對(duì)陶瓷粉末件冷等靜壓成形過程進(jìn)行分析,并采用更新的拉格朗日方法來描述坐標(biāo)系。
在邊界條件非線性方面,由于在加壓變形過程中粉體與橡膠模具的接觸和相互間的摩擦起著重要作用,其接觸約束通過直接約束法來施加。同時(shí)考慮到了加載方向 隨結(jié)構(gòu)變化而變化的外力的影響。2.2材料模型粉末材料是由大量顆粒構(gòu)成的,每一個(gè)顆粒均可以視為*致密體其變形行為可以用傳統(tǒng)的塑性力學(xué)來描述。但是 由這些顆粒所組成的粉末材料坯體含有一定的孔隙,是一個(gè)非連續(xù)體。這種非連續(xù)體的變形是一個(gè)非常復(fù)雜的過程,等靜壓力影響粉末材料的屈服。因此,粉末材料 的屈服準(zhǔn)則需要考慮如下兩個(gè)問題:粉末材料在塑性變形時(shí)的體積(密度)變化;粉末材料的屈服應(yīng)力與相對(duì)密度有關(guān)系,相對(duì)密度越大,變形所需的應(yīng)力也越大。
從八十年代中期開始,對(duì)粉末材料的屈服準(zhǔn)則進(jìn)行了一系列的研究工作。尤其是近年來,隨著粉末成形數(shù)值模擬技術(shù)的發(fā)展,粉末材料屈服準(zhǔn)則的研究引起了人們 的重視。許多學(xué)者提出了如式(1)的粉末材料成形條件式1靜水壓力對(duì)粉體成形的影響,并且均可以用如下的一個(gè)通式來表示,即一YP為材料常數(shù),為相對(duì)密度 的函數(shù);m為等靜壓力;粉末材料的屈服應(yīng)力0S與不可壓縮材料的屈服應(yīng)力00之間的關(guān)系可由下式給出,即在0S中包括粉末顆粒間的表面摩擦狀態(tài)、粉體的破 壞等因素的影響,因此0S隨相對(duì)密度的變化而不斷變化。而03不隨相對(duì)密度而變化本文研究對(duì)象為陶瓷粉末材料的參數(shù)Y卩、n、0與其種類有關(guān),目前這些參 數(shù)還不能從理論上給出,只能通過:其中:CH)為材料常數(shù),具體取值為陶瓷粉末成形件CIP成形后頂部相對(duì)密度分布的模擬結(jié)果??梢钥闯觯景繇敳康菇翘?/span> 的相對(duì)密度較小,zui小值只有0.661其他區(qū)域的相對(duì)密度較大,一般達(dá)到0.885.由此可見,通過有限元模擬可以清楚地了解到相對(duì)密度的分布情況,從而 發(fā)現(xiàn)產(chǎn)生密度缺陷的原因。
陶瓷粉末成形件頂部相對(duì)密度分布3.2陶瓷粉末流動(dòng)情況所示為成形過程中陶瓷粉末顆粒流動(dòng)情況。由于陶瓷粉末坯料帶 傾斜端面,在壓制時(shí)壓制方向與傾斜端面不垂直,從而使粉體顆粒產(chǎn)生側(cè)向移動(dòng),并引發(fā)剪應(yīng)力作用,因此形成低密度區(qū)域。從所示的頂部粉體顆粒流動(dòng)情況可以發(fā) 現(xiàn),在頂部A區(qū)、B區(qū)部位粉體顆粒的流動(dòng)緩慢,且相鄰顆粒之間的流動(dòng)不協(xié)調(diào),其位移行程有明顯差異,相鄰顆粒之間的變形不一致、不協(xié)調(diào),存在明顯的難變形 區(qū)域,變形受到阻礙作用,從而產(chǎn)生了低密度現(xiàn)象。其原因主要在于模具形狀的影響,即變形區(qū)對(duì)粉體的變形與流動(dòng)有阻礙作用。
3.3相對(duì)密度變化規(guī)律為成形過程中陶瓷粉末件密度變化情況,其中,頂部節(jié)點(diǎn)和中部節(jié)點(diǎn)的位置分別位于所示的頂部低密度區(qū)域和中部正常密度區(qū)域。
從中可以看出,模具形狀對(duì)陶瓷粉末成形件的壓密效果有極大影響。
中部節(jié)點(diǎn)位于粉末成形件中部,變形時(shí)受模具形狀影響較小,因而變形均勻,致密效果良好,相對(duì)密度從0.45增至0.88.頂部節(jié)點(diǎn)位于頂部芯棒倒角處低 密度區(qū)域,變形時(shí)受模具形狀影響較大,因而變形不均勻,致密效果較差,密度僅從0.45增加到0.66左右。并且,從圖中可以看出,頂部低密度區(qū)域處的粉 體在成形過程初期的致密行為良好,比位于中部的粉體更易于變形,但在成形過程中間密度反而開始降低,從0.70下降到0.66左右。
在成形過 程初期粉體處于疏松狀態(tài),各部分均容易發(fā)生變形。并且位于產(chǎn)品頂部的粉體顆粒此時(shí)處于較佳的三向壓應(yīng)力狀態(tài),比位于中部的粉體更易于變形,因而致密效果更 佳。但在成形過程中期,由于受芯棒形狀的影響,與型芯相接觸部位的變形受阻,因而壓密效果變差,同時(shí)由于在頂部低密度區(qū)域外圍的粉體顆粒仍繼續(xù)運(yùn)動(dòng)變形, 并繼續(xù)壓密,因此就在兩者之間產(chǎn)生滑動(dòng),出現(xiàn)“搓揉”現(xiàn)象,從而造成該部位密度持續(xù)下降,形成了一個(gè)低密度區(qū)域。
從以上分析可以清晰地看出, 陶瓷粉末件的幾何形狀尺寸、模具形狀對(duì)密度分布有很大影響,該陶瓷粉末成形件的長寬比大,尺寸變化大,壓制時(shí)易出現(xiàn)局部區(qū)域應(yīng)力集中現(xiàn)象,變形不易進(jìn)行, 從而出現(xiàn)低密度區(qū)域。同時(shí),由于粉末件坯料帶傾斜端面,在壓制成形時(shí)壓制方向與傾斜端面不垂直,使得粉體顆粒產(chǎn)生側(cè)向移動(dòng),從而造成低密度區(qū)域的形成。本 研究有助于對(duì)模具形狀提出改進(jìn)方案,以提高陶瓷粉末成形件的使用壽命。
4結(jié)論通過模擬發(fā)現(xiàn)芯棒頂部倒角處粉末材料的相對(duì)密度zui小為0.661,其他區(qū)域的相對(duì)密度較大,達(dá)到0.885.說明陶瓷粉末件的幾何形狀尺寸、模具形狀對(duì)低密度區(qū)域的形成有極大影響。
由于陶瓷粉末坯料帶傾斜端面,在壓制成形時(shí)壓制方向與傾斜端面不垂直,易出現(xiàn)局部區(qū)域應(yīng)力集中現(xiàn)象,變形不易進(jìn)行,從而使粉體顆粒產(chǎn)生側(cè)向移動(dòng),并引發(fā)剪應(yīng)力作用,因此形成低密度區(qū)域。
廈門易仕特儀器有限公司
工廠地址:福建省廈門市同安區(qū)西柯鎮(zhèn)美人山中路288號(hào)廠房
©2019 版權(quán)所有:廈門易仕特儀器有限公司 備案號(hào):閩ICP備16009010號(hào)-4 總訪問量:330303 站點(diǎn)地圖 技術(shù)支持:化工儀器網(wǎng) 管理登陸